Search the whole station

# 离散数学与图论代写 图论代写 离散数学代写 数学作业代写

296

## Discrete Mathematics and Graph Theory

### Practice Class 4 离散数学与图论代写

1. Give recursive definitions of the following sequences.

(a) The sequence of powers of 2: 20 = 1, and for n ≥ 1, _______

(b) The Catalan numbers: c0 = 1, and for n ≥ 1, _______

What is the correct order of the lines?

3. Consider the sequence defined by a0 = 0, an = an1 + 2n for n ≥ 1.

(a) Unravelling gives the non-closed formula _______

(b) Summing the arithmetic progression gives the closed formula _______

(c) Check that the formula in the previous part satisfies the recurrence relation: _______

4. Consider the recurrence relation an = an1 + 6an2, for n ≥ 2.

(a) What is the characteristic polynomial?

(b) What are the roots of this polynomial? 离散数学与图论代写

(c) Write down the general solution: _______

(d) Find the solution when a0 = 1, a1 = −1:_______

5. Consider the recurrence relation an = −2an1 − an2, for n ≥ 2.

(a) What is the characteristic polynomial?

(b) What are the roots of this polynomial?

(c) Write down the general solution: _______

(d) Find the solution when a0 = 1, a1 = −3: _______

6. Consider the recurrence relation an = −an2, for n ≥ 2.

(a) What is the characteristic polynomial?

(b) What are the roots of this polynomial?

(c) Write down the general solution: _______

(d) If a0 = 0 and a1 = 1, what is a7?

### Practice Class 5 离散数学与图论代写

1. Consider the recurrence relation an = 4an1 − 4an2 + 3n + 2, for n ≥ 2.

(a) If pn is a particular solution of this recurrence, the general solution is _______ where bn is a general solution of the homogeneous recurrence relation, i.e.

bn = 4bn1 − 4bn2.

(b) The characteristic polynomial of the homogeneous recurrence is x2 − 4x + 4.

Hence _______

(c) A particular solution of the form pn = An + B is _______

(d) Find the solution of the original recurrence when a0 = 15, a1 = 21: _______

2. Write down the general solution of each of the following recurrence relations, by finding a particular solution of the stated form.

(a) an = 3an1 + 2 for n ≥ 1; pn = A.

(b) an = 2an1 + n + 1 for n ≥ 1; pn = An + B.

(c) an = 3an1 − 2n for n ≥ 1; pn = A2n.

4.For each of the sequences (a)–(g), write the number (i)–(vii) of its generating function.

(a) 1, 2, 22 , 23 , · · ·  _______

(b) 1, 1, 1, 1, · · ·  _______

(c) 3, 2, 1, 0, 0, 0, · · ·   _______

(d) 1, 2, 3, 4, 5, · · ·   _______

(e) 0, 1, 2, 3, 4, · · ·   _______

(f) 0, 0, 1, 2, 3, 4, · · ·  _______

(g) 2, 3, 4, 5, 6, · · ·   _______

The prev: The next:

### Related recommendations

• #### 模块和表示论代写 MATH 5735代写 数学作业代写 数学代写

710

MATH 5735 - Modules and Representation Theory Assignment 1 模块和表示论代写 1. (9 marks) Recall that an integral domain is a commutative ring (with unity) that has no zero divisors. (a) Pro...

View details
• #### 线性常微分方程代写 数学函数代写 微分方程代写 数学代写

615

CHAPTER 1. LINEAR ORDINARY DIFFERENTIAL EQUATIONS 线性常微分方程代写 2.Suppose that the data in Table 1.3 gave the absolute difference as a constant instead of the relative change. The recursio...

View details
• #### 离散数学Midterm代考 MATH2302/7308代写 离散数学代考

255

MATH2302/7308 Practice Midterm 离散数学Midterm代考 1. (10 marks total) Note that for this question your answers must be given as a simple expression or a number, not in terms of a 1. (10 m...

View details
• #### 半群理论作业代做 MT5863代写 半群理论代写 数学作业代写

331

MT5863 Semigroup theory: Problem sheet 3 半群理论作业代做 Binary relations and equivalences 3-1. Let X = {1, 2, 3, 4, 5, 6}, let ρ be the equivalence relation on X with equivalence classes {1,...

View details
1