Search the whole station

离散数学与图论代写 图论代写 离散数学代写 数学作业代写

Discrete Mathematics and Graph Theory

离散数学与图论代写 Practice Class 4 1. Give recursive definitions of the following sequences. (a) The sequence of powers of 2: 20 = 1, and for n ≥ 1, _

Practice Class 4 离散数学与图论代写

1. Give recursive definitions of the following sequences.

(a) The sequence of powers of 2: 20 = 1, and for n ≥ 1, _______

(b) The Catalan numbers: c0 = 1, and for n ≥ 1, _______

What is the correct order of the lines?

3. Consider the sequence defined by a0 = 0, an = an1 + 2n for n ≥ 1.

(a) Unravelling gives the non-closed formula _______

(b) Summing the arithmetic progression gives the closed formula _______

(c) Check that the formula in the previous part satisfies the recurrence relation: _______

4. Consider the recurrence relation an = an1 + 6an2, for n ≥ 2.

(a) What is the characteristic polynomial?

(b) What are the roots of this polynomial? 离散数学与图论代写

(c) Write down the general solution: _______

(d) Find the solution when a0 = 1, a1 = −1:_______

5. Consider the recurrence relation an = −2an1 − an2, for n ≥ 2.

(a) What is the characteristic polynomial?

(b) What are the roots of this polynomial?

(c) Write down the general solution: _______

(d) Find the solution when a0 = 1, a1 = −3: _______

6. Consider the recurrence relation an = −an2, for n ≥ 2.

(a) What is the characteristic polynomial?

(b) What are the roots of this polynomial?

(c) Write down the general solution: _______

(d) If a0 = 0 and a1 = 1, what is a7?

离散数学与图论代写
离散数学与图论代写

Practice Class 5 离散数学与图论代写

1. Consider the recurrence relation an = 4an1 − 4an2 + 3n + 2, for n ≥ 2.

(a) If pn is a particular solution of this recurrence, the general solution is _______ where bn is a general solution of the homogeneous recurrence relation, i.e.

bn = 4bn1 − 4bn2.

(b) The characteristic polynomial of the homogeneous recurrence is x2 − 4x + 4.

Hence _______

(c) A particular solution of the form pn = An + B is _______

(d) Find the solution of the original recurrence when a0 = 15, a1 = 21: _______

2. Write down the general solution of each of the following recurrence relations, by finding a particular solution of the stated form.

(a) an = 3an1 + 2 for n ≥ 1; pn = A.

(b) an = 2an1 + n + 1 for n ≥ 1; pn = An + B.

(c) an = 3an1 − 2n for n ≥ 1; pn = A2n.

离散数学与图论代写
离散数学与图论代写

4.For each of the sequences (a)–(g), write the number (i)–(vii) of its generating function.

(a) 1, 2, 22 , 23 , · · ·  _______

(b) 1, 1, 1, 1, · · ·  _______

(c) 3, 2, 1, 0, 0, 0, · · ·   _______

(d) 1, 2, 3, 4, 5, · · ·   _______

(e) 0, 1, 2, 3, 4, · · ·   _______

(f) 0, 0, 1, 2, 3, 4, · · ·  _______

(g) 2, 3, 4, 5, 6, · · ·   _______

更多代写:计算机科学与技术论文  gmat代考价格  英国会计代上网课  建筑设计Essay代写  加拿大作业代做推荐  留学生考试作弊

合作平台:essay代写 论文代写 写手招聘 英国留学生代写

The prev: The next:

Related recommendations

1
您有新消息,点击联系!